581 research outputs found

    Prevalence and molecular characterization of Aereomonas spp. in ready-to-eat foods in Italy

    Get PDF
    A survey was carried out in Italy to ascertain the prevalence of Aeromonas spp. in ready-to-eat foods (vegetables, cheeses, meat products, and ice creams) and the level of molecular heterogeneity of the isolates found by macrorestriction analysis of genomic DNA with pulsed-field gel electrophoresis (PFGE). In total, 46 (14.4%) of the 320 food samples examined were found positive for Aeromonas spp. The highest percentages of isolation were discovered in vegetables, particularly lettuce (45.0%), endive (40.0%), and rucola (20.0%). Ricotta was the only cheese type analyzed that showed a high frequency of isolation (45.0%). Among meat products, salami and raw ham (25.0% of samples positive) and, to a lesser extent, baloney (5.0%) were found positive for Aeromonas spp. Aeromonas hydrophila was the most common isolate from foods of animal origin, whereas Aeromonas caviae was the dominant species in vegetables. No motile aeromonads were found in ice cream samples. Aeromonas isolates showed a high level of genetic heterogeneity, because 24 PFGE patterns were identified among 27 A. hydrophila strains and 20 PFGE patterns were found in 23 A. caviae isolates. In conclusion, consumers of ready-to-eat foods in Italy are regularly exposed to many genetically distinct strains of A. hydrophila and A. caviae without evident signs of malaise, and therefore, few of these strains, if any, are likely to be pathogenic

    Distance Estimation of an Unknown Person from a Portrait

    Get PDF
    We propose the first automated method for estimating distance from frontal pictures of unknown faces. Camera calibration is not necessary, nor is the reconstruction of a 3D representation of the shape of the head. Our method is based on estimating automatically the position of face and head landmarks in the image, and then using a regressor to estimate distance from such measurements. We collected and annotated a dataset of frontal portraits of 53 individuals spanning a number of attributes (sex, age, race, hair), each photographed from seven distances. We find that our proposed method outperforms humans performing the same task. We observe that different physiognomies will bias systematically the estimate of distance, i.e. some people look closer than others. We expire which landmarks are more important for this task

    Acute inactivation of the medial forebrain bundle imposes oscillations in the SNr: a challenge for the 6-OHDA model?

    Get PDF
    It has been recently shown that the substantia nigra pars reticulata (SNr) of 6-hydroxydopamine (6-OHDA)-lesioned rats, under urethane anaesthesia, manifests a prominent low frequency oscillation (LFO) of around 1Hz, synchronized with cortical slow wave activity (SWA). Nevertheless, it is poorly understood whether these electrophysiological alterations are correlated only with severe dopamine depletion or may also play a relevant pathogenetic role in the early stages of the dopamine denervation. Hence, here we recorded SNr single units and electrocorticogram (ECoG) in two models of dopamine denervation: (i) acute dopamine denervated rats, obtained by injection of tetrodotoxin (TTX), (ii) chronic dopamine depleted rats, 2 weeks after 6-OHDA lesioning. Both TTX and 6-OHDA were infused into the medial forebrain bundle (MFB). The acute TTX-mediated dopamine depletion caused a fast developing occurrence of a SNr/ECoG coherence, peaking between 0.48 and 1.22 Hz, parallel with a consistent decrease of firing rate (from 22.61 \ub1 7.04 to 15.35 \ub1 9.04 Hz) homolateraly to the infusion. Strikingly, this abnormal 1 Hz synchronization, TTX-mediated was qualitatively similar to the ECoG/SNr synchronization detectable in the 6-OHDA lesioned hemisphere (LH). In addition, TTX infusion in the un-lesioned hemispheres (UH) of 6-OHDA treated rats, produced ECoG/SNr synchronization qualitatively similar to that recordable in the LH. Hence, our data support the proposition that LFO, is tightly correlated to cortex, and represent a critical hallmark of a basal ganglia (BG) failure from the early stages of dopamine denervation

    Evaluation of basal ganglia haemodynamic changes with perfusion-weighted magnetic resonance imaging in patients with Parkinson's disease

    Get PDF
    The aim of our study was to assess the regional cerebral blood flow (rCBF) of basal ganglia and thalami in patients with Parkinson’s disease (PD) using perfusion–weighted magnetic resonance imaging (PW–MRI)

    Characterization of a surface-active protein extracted from a marine strain of penicillium chrysogenum

    Get PDF
    Marine microorganisms represent a reservoir of new promising secondary metabolites. Surface-active proteins with good emulsification activity can be isolated from fungal species that inhabit the marine environment and can be promising candidates for different biotechnological applications. In this study a novel surface-active protein, named Sap-Pc, was purified from a marine strain of Penicillium chrysogenum. The effect of salt concentration and temperature on protein production was analyzed, and a purification method was set up. The purified protein, identified as Pc13g06930, was annotated as a hypothetical protein. It was able to form emulsions, which were stable for at least one month, with an emulsification index comparable to that of other known surface-active proteins. The surface tension reduction was analyzed as function of protein concentration and a critical micellar concentration of 2 M was determined. At neutral or alkaline pH, secondary structure changes were monitored over time, concurrently with the appearance of protein precipitation. Formation of amyloid-like fibrils of SAP-Pc was demonstrated by spectroscopic and microscopic analyses. Moreover, the effect of protein concentration, a parameter affecting kinetics of fibril formation, was investigated and an on-pathway involvement of micellar aggregates during the fibril formation process was suggested

    Enhanced in vitro antitumor activity of a titanocene complex encapsulated into polycaprolactone (PCL) electrospun fibers.

    Get PDF
    PURPOSE: The purpose of this work was to achieve detailed biomaterials characterization of a drug delivery system for local cancer treatment based on electrospun titanocene trichloride-loaded resorbable polycaprolactone (PCL) fibers. METHODS: The PCL fibers were characterized for their structural, morphologic and physical properties. The drug release kinetics of the titanocene complex was investigated at different concentrations, to obtain a set of correlations between structure and tuneable release. After exposing cancer cells directly onto the surface of PCL fibers, the anti-proliferative effects of titanocene-loaded PCL were assessed by: (i) counting viable cells via live/dead staining methods, and (ii) analyzing cell apoptosis. RESULTS AND CONCLUSIONS: Titanocene concentration influenced fiber diameters reduced for PCL filled with titanocene. X-ray analysis suggested that the titanocene, encapsulated into the PCL fibers, is not allowed to crystallize and exists as amorphous aggregates into the fibers. The titanocene release curves presented two stages unrelated to PCL degradation: an initial burst release followed by a release linear with time, extending for a very long time. All of the titanocene-loaded fibers revealed sustained drug release properties suggesting their potential clinical applicability for the treatment of local cancer diseases

    Atrial natriuretic peptide (ANP) gene promoter variant and increased susceptibility to early development of hypertension in humans.

    Get PDF
    Previous evidence supports a role of atrial natriuretic peptide (ANP) as a candidate gene for hypertension. We characterized an ANP gene promoter variant, which has been associated with lower peptide levels, in a sample of young male subjects from Southern Italy (n=395, mean age=35.2+/-2 years) followed up for 28 years. In this cohort, the ANP gene variant was associated with early blood pressure increase and predisposition to develop hypertension

    Levodopa-induced dyskinesia in Parkinson's disease: sleep matters

    Get PDF
    OBJECTIVE: The spectrum of clinical symptoms changes during the course of Parkinson's disease. Levodopa therapy, while offering remarkable control of classical motor symptoms, causes abnormal involuntary movements as the disease progresses. These levodopa-induced dyskinesias (LIDs) have been associated with abnormal cortical plasticity. Since slow wave activity (SWA) of nonrapid eye movement (NREM) sleep underlies adjustment of cortical excitability, we sought to elucidate the relationship between this physiological process and LIDs. METHODS: Thirty-six patients at different stages of Parkinson's disease (PD) underwent whole-night video polysomnography-high-density EEG (vPSG-hdEEG), preceded by 1 week of actigraphy. To represent the broad spectrum of the disease, patients were divided into three groups by disease stage, (i) de novo (DNV; n = 9), (ii) advanced (ADV; n = 13), and (iii) dyskinetic (DYS; n = 14) and were compared to an age-matched control group (CTL; n = 12). The SWA-NREM content of the PSG-hdEEG was then temporally divided into 10 equal parts, from T1 to T10, and power and source analyses were performed. T2-T3-T4 were considered early sleep and were compared to T7-T8-T9, representing late sleep. RESULTS: We found that all groups, except the DYS group, manifested a clear-cut SWA decrease between early and late sleep. INTERPRETATION: Our data demonstrate a strong pathophysiological association between sleep and PD. Given that SWA may be a surrogate for synaptic strength, our data suggest that DYS patients do not have adequate synaptic downscaling. Further analysis is needed to determine the effect of drugs that can enhance cortical SWA in LIDs

    A versatile and user-friendly approach for the analysis of proteins in ancient and historical objects

    Get PDF
    Identification and characterization of ancient proteins still require technical developments towards non-invasiveness, sensitivity, versatility and ease of use of the analyses. We report that the enzyme functionalized films, described in Cicatiello et al. (2018), can be used efficiently on the surface of different objects ranging from fixative-coated paper to canvas to the coating on an albumen photograph, as well as the much harder surfaces of ivory objects and the proteinaceous binders in the decoration of a wooden Egyptian coffin. The mixture of digested peptides that are efficiently captured on the functionalized surface are also amenable to LC-MS/MS analysis, which is necessary to confidently identify chemical modifications induced upon degradation, in order to characterize the conservation state of proteins. Moreover, in a two-step procedure, we have combined the trypsin functionalized film with a PNGaseF functionalized film, which adds a deglycosylation pretreatment allowing improved detection of glycosylated proteins. SIGNIFICANCE: User friendly trypsin functionalized films were implemented to expand their potential as versatile, modular tools that can be widely exploited in the world of diagnosis of cultural heritage objects, ancient proteins, and palaeoproteomics: a procedure that could be carried out by conservators or archaeologists first on-site and later analysed with standard MS techniques
    • …
    corecore